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In this paper we formulate the aerodynamic sound problem for a relaxing medium 
in a rather general way, independent of the details of the relaxation process. The 
medium is characterized by an appropriate relaxation time ro and by a frozen (afo) 
and an equilibrium (aeo) sound speed. The equation describing aerodynamic sound 
in such a medium is the familiar one describing acoustic waves in a non-equilibrium 
medium but subjected to aerodynamic sound sources expressed in terms of a frozen 
and an equilibrium form of the Lighthill stress tensor. The far-field result for both 
compact and non-compact sources in the frequency range w B rol can be expressed as 
the ratio of far-field densities for the relaxing and non-relaxing propagation medium: 

where x is the observation distance and the subscript L stands for ‘Lighthill’. The 
result for the main radiated aerodynamic sound, which comes from sources in the 
range w < rz1, essentially propagates in a, manner described by the lower-order 
equilibrium waves, the diffusive effects from the higher-order waves being small, and 
the result for compact sources is a restatement of Lighthill’s result in terms of the 
equilibrium propagation speed with the source region identically in equilibrium. For 
non-compact sources the propagation is still given by a,, but the source region is now 
understood to encompass relaxation effects, the details of which are left unspecified. 

1. Introduction 
Aerodynamic sound generation (Lighthill 1952, 1962) in the presence of fluid 

inhomogeneities has been primarily discussed in terms of the effect of such inhomo- 
geneities on the aerodynamic sound source (Crighton & Ffowcs Williams 1969; Ffowcs 
Williams 1969a, b ; Strahle 1971 ; Hassan 1974; Crighton 1975). Such inhomogeneities 
in the source region, in general, enhance the sound generated. On the other hand, the 
effect of inhomogeneities, in the form of adjustment or relaxation processes, on the 
propagation region of an acoustic or Mach wave has received rather thorough dis- 
cussion in the literature (Stokes 1861; Chu 1957; Moore & Gibson 1960; Vincenti & 
Kruger 1965; Marble 1970), although not in the context of aerodynamic sound genera- 
tion. More recently Marble & Candel (1974) and Marble (1975) discussed the acoustic 
attenuation in fans and ducts by the vaporization of liquid droplets and found rather 
interesting possibilities for noise reduction. Inhomogeneities in the propagation region 
in general have a beneficial effect on the reduction of the emitted sound. 

Our interest here is that the inhomogeneities, characterized by a kind of ‘relaxation 
process’, are present in both the source and the propagation region. Their presence 
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in the propagation region may have been artificially induced (e.g. Marble 1975) in 
order to alter the propagation features of the sound that is of aerodynamic origin. 
The propagation region may also have been set up by chemical reactions that are 
very nearly in equilibrium (e.g. Vincenti & Kruger 1965), the acoustic waves emitted 
from a localized aerodynamic sound source displacing the propagation region out of 
equilibrium. For the purposes of understanding the general features of these problems, 
which may lead to aerodynamic noise reduction possibilities, it  is thus appropriate to 
unify the various discussions in the literature and reconstruct Lighthill’s (1952, 1962) 
aerodynamic sound theory for a relaxing medium. 

One could, a t  the outset, specify the details of the particular relaxation process 
and then proceed to sort out theoretically the relaxation wave propagation operator 
and to interpret the deviation from such propagation effects as the aerodynamic sound 
sources. However, with the specification of details at  the outset the source terms so 
obtained become rather unmanageably awkward. In the spirit of Lighthill’s (1952, 
1962) work, which encompasses both generality and simplicity, the details of the 
relaxation process need not be specified at  the outset. We need to say only that the 
relaxation process is characterized by a relaxation time ro and by an equilibrium and 
a frozen sound speed, a,, and afo, respectively, in a propagation region which is other- 
wise in equilibrium. 

We shall give a simple derivation of the aerodynamic sound theory in a relaxing 
medium in $ 2 ,  The propagation is described in terms of a D’Alembertian characterized 
by the frozen sound speed relaxing towards one characterized by the equilibrium 
sound speed, while the appropriate source is interpreted in terms of a frozen Lighthill 
stress tensor Tij,f, relaxing towards the equilibrium one xj, ,. The appropriate Green’s 
function for the three-dimensional relaxing wave propagation operator, which is 
known (Clarke 1964), is used to construct an exact integral for the aerodynamic sound 
in 9 3. The sound generated far from the source is then estimated in terms of the aero- 
dynamic sound source. 

2. Derivation of the aerodynamic sound equation for a relaxing medium 
In  what follows, we shall formulate the problem in terms of a single relaxation 

process characterized by a single relaxation time T ~ .  This has certain merits in addition 
to simplicity as it is applicable to actual situations where the acoustic attenuation in 
an appropriate frequency range is due to a single physical process although the medium 
itself may possess multiple excitable relaxations or reactions. For instance, the 
vaporization process is found to be the dominant attenuation mechanism in a multi- 
phase medium (Marble 1975). 

We begin by writing down the continuity equation for the fluid 

appt + a(pU,)laXi = Q ,  (2.1) 

where p is the density, ui the velocity vector, Q the local mass production rate and 
xi and t are the co-ordinates and time, respectively. The momentum equations for the 
fluid are 

where p i j  is the stress tensor and Fi the volumetric force acting on the fluid. 
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We now proceed to  draw an analogy between the nonlinear problem above, (2.1) 
and (2.2), and the linear theory of acoustics in a relaxing or reacting medium.The 
governing equation for the linear problem, which was first obtained by Stokes 
(1851), is (see, for instance, Vincenti & Kruger 1965) 

70a(CI?p)/at+ CI% = 0, (2.3) 

where the frozen wave operator is defined as 

03 = a 2 / a t 2  - u;,v~, 
a,, denoting the ambient frozen sound speed and V 2  the Laplacian a2/axiaxi, while the 
equilibrium wave operator is 

a,, denoting the ambient equilibrium sound speed. To recast (2.1) and (2.2) into a 
form where the left-hand sides exhibit the same relaxation wave operator as in (2.3), 
we define the following Lighthill stress tensors: 

qj, = puiuj +pij - a~,pSij 

qj,e =_ puiuj +pij-  a$,pSij 

= a2/at2-a:,V2, 

(frozen), 

(equilibrium). 

Thus (2.2) can be written exactly as 

and 

By eliminating pui between (2.1) and (2.4) we obtain an equation appropriate for the 
frozen acoustic problem while eliminating pui between (2.1) and (2.5) gives an equation 
appropriate for the equilibrium acoustic problem. Combining these in a manner 
guided by the linear problem (2.3), we obtain 

pole’ pole’ 

This is the equation describing a propagation medium which is in equilibrium except 
where small amplitude acoustic waves displace the medium out of equilibrium as 
described by the left side of (2.6). Such acoustic waves are generated by the nonlinear 
unsteady motions, which are contained in a finite region. More precisely, such relaxa- 
tion-acoustic waves are generated by the ‘external’ fluctuating sources of mass Q, 
forces 4 and stresses qj,, and l&e on the right side of (2.6). The propagationmedium 
is characterized by the relaxation time 70 and the frozen and equilibrium sound 
speeds afo and a,,, respectively (where afo > a,,). We have obtained (2.6) entirely 
independently of the details of the relaxation process. If  the sources on the right of 
(2.6) are known, the problem of aerodynamic sound generation in a relaxing medium 
may be solved in a manner similar to acoustical problems in a relaxing or reacting 
gas (see, for instance, Clarke 1964). 
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3. The radiated aerodynamic sound field 
It is known from acoustics in a relaxing medium (Chu 1957; Clarke 1964) that the 

Green’s function for (2.6), like that for the piston problem associated with the homo- 
geneous part of (2.6), admits a wave propagation field describable by its behaviour in 
the vicinity of the two spherical shells associated with the two sound speeds af, and 
ueo. The leading characteristic is associated with the highest-order, frozen wave ufo, 
the medium remaining undisturbed ahead of it and a discontinuous jump, just as in 
ordinary acoustics, occurring at  the wave itself. However, in a relaxing medium the 
signal on the frozen wave front R - afot is damped according to 

where R is the distance from the source. For large distances from the source, the bulk 
of the signal is carried along the equilibrium wave R N a,,t, but the signals there 
behave in a diffusive manner according to 

The geometric factor R-l is augmented by the ‘diffusional’ decay R-3. The signals 
along the equilibrium wave are diffused, reaching maxima along the ‘front’ R N a,,t. 
It can be surmised intuitively (Lighthill & Whitham 1955; Whitham 1959) that the 
effect of the lower-order waves on the higher-order ones provides ‘damping’, while 
the effect of the higher-order waves on the lower-order ones is to provide a ‘diffusional’ 
behaviour. 

In  the absence of relaxation, the Green’s function wave front decays simply as 
(u$R)-l, where a, is the sound speed in the propagation medium. It can be seen that 
an identically equilibrium propagation medium, where a, = a,,, is singular in that the 
diffusional effect of the higher-order frozen waves is entirely absent. This is the case 
only when 7, = 0. For aerodynamic sound whose frequency content is much larger 
than 701, the modified Green’s function in the propagation region has the behaviour 
shown by (3.1), which is advantageous to aerodynamic sound reduction or ‘absorp- 
tion’. The question that naturally arises is that of the circumstances under which 
this situation could be exploited for practical use. A t  the outset, one could envision 
that the use of (3.1) would best be suited to ‘shroud’ localized regions of intense sound 
sources. Since the relation (3.1) requires that the frequency of the aerodynamic sound 
be large compared with 701, a 701 corresponding approximately to 330 Hz is achievable, 
for instance, by the injection of water droplets of radius about 0.7pm at a weight 
fraction of 1 % into air at  about 25 “C at  1 atmosphere (see Marble 1975; Marble & 
Candell974). In  this case ~ ~ , / C C ~ ~  - 1 z 0.21 and for afo N 440 m/s the e-folding distance 
for the Green’s function is about 1 m. The relation (3.2) requires that the aerodynamic 
sound frequency content be small compared with 701, however the diffusive effects 
are relatively small in this situation and the Green’s function in this frequency range 
is just that for the identically equilibrium medium corresponding to a propagation 
speed of a,,. The present study, which places ‘absorption’ and ‘dispersion’ in the 
context of aerodynamic sound, is directed towards understanding how aerodynamic 
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sound in the undesirable frequency ranges could be absorbed with that in the less 
undesirable ranges essentially left unaltered and propagated into the far field but a t  
a slightly lower speed. 

Although we could formally write the exact expression representing p in (2.6) in 
terms of the Green’s function and the sources on the right side of (2.6) (see, for instance, 
Clarke 1964), the result is rather cumbersome. It will be more illuminating to consider 
the problem approximately and elucidate the behaviour of the aerodynamic sound 
‘heard’ on the frozen wave front and on the equilibrium wave, which ultimately 
carries the bulk of the signal. To this end, we employ the Fourier transform in time, 
for which much of the formalism discussed by Crighton (1975, $4) can be used. We 
then consider the problem and relevant approximations directly in x ,  w space, where 
x is the spatial position and w is a particular frequency. For convenience, we use the 
notation introduced by Crighton (1975)’ in which the argument of the function denotes 
the status of its Fourier transform, rather than introducing new symbols for the 
functions themselves. The Fourier transform off ( x ,  t )  with respect to t is defined as 

f ( x ,  w) = J’f (x7  t)eiwtdt, 

f ( x ,  t )  = 2n w)e-iutdw. 

and its inverse transform is 
1 

We rewrite the equation (2.6) for aerodynamic sound in a relaxing medium as 

where the source terms are defined as 

The special forms of frozen and equilibrium source terms are defined as 

Applying the Fourier transform in time to (3.3) also gives an inhomogeneous Helm- 
holtz equation 

(3.5) 

but the effective wavenumber and source terms are now 

(VZ+ @ ) p ( x ,  w )  = d ( x ,  w )  

and 
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We note here that the special forms df(x,  w )  and sd,(x, w )  are identical to A,(x, w )  and 
Ae(x, w ) ,  respectively: 

a a 2  

axi axi axj d f ( X ,  w )  = A& w )  = - -iwQ(x, w )  - - &(x, w )  + - !Z&,(x, w ) ]  , 

Equations (3.6) and (3.7) do not imply that the sources are themselves either ‘frozen’ 
or in ‘equilibrium ’, but that they appear in the above form in their respective contri- 
butions to the frozen and equilibrium waves, as we shall soon see. The details of the 
relaxation process of the sources need not be specified as yet but are entirely encom- 
passed in (3.6) and (3.7).  

The Green’s function for the three-dimensional Helmholtz equation (3.5) is 

O(x, w )  = - (4nx)-lexp (isox), 

where x = 1x1. Thus, using (3.8), we obtain 

where y denotes the source-point co-ordinates and x the observation-point co-ordi- 
nates. Following Crighton (1  97$), if we introduce yr and ys, in the direction of and 
normal to x, respectively, the approximation to order x-1 gives 

The formal solution of (3.10) is then 

/exp[i(iox-wt)] d(yr ,ys ,o)exp (-iEoyr)dyrdy,dw. (3.11) s P(XPt) = -- 8n2x 

Direct interpretation of (3.1 1) is difficult and approximate considerations suffice. Our 
interest here is in the behaviour of the solution near the frozen wave fronts and in the 
features of the bulk of the radiated aerodynamic sound located near the equilibrium 
waves. The estimation of p near the frozen wave front is obtained by considering 
p(x, w )  for large wr0. Thus, for large ~7~ 

X As(yr,y,,w)exp ( --iks0yr) exp [ (1 -8) -”-I dy,dy,dw, (3.12) s af 0 2% 0 7 0  

where the appropriate wavenumber here is kso = w/afo. It is obvious from (3.12) that 
the radiated aerodynamic sound with frequencies large compared with 701 is exponen- 
tially damped along the frozen wave fronts x = ufot and that the effective sources 
have the frozen form of the Lighthill sources (but are not necessarily frozen). This 
conclusion is obtained without any assumption about the compactness of sources. 
However, in order to cast the source integral into more familiar forms it will be further 
simplified by considering the limiting cases of compact and non-compact sources. 
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For the compact case, kfo+O, or more precisely, lw/afo-+O, where I is a typical 
length scale of the source region. For the source frequencies large compared with 701 

in our consideration of the behaviour of the sound radiated along the frozen wave 
fronts, this implies that l /a fo~o-+ 0. Thus the exponential factor in the source integral 
(3.12), i.e. ( 1  - U ~ ~ / U ~ ~ )  yr/2afo~o, is indeed small and the source integral becomes 

j-exP[iw(x/afo-t)l p,(% Y,, w)dYrdYsdw, 

giving the interpretation that the frozen form of the Lighthill source integral is 
exponentially damped : 

Since for compact sources the source frequency corresponds to that of the radiated 
aerodynamic sound frequency, the situation wro B 1 also refers to the source region. 
The relaxation process for the sources is thus in the frozen situation as well and 
A, = A,,,. The reduction of aerodynamic sound by absorption given by (3.13) can 
thus be cast into a very simple form for compact sources: 

(3.14) 

in the frequency range w 9 7i1. 

For non-compact sources w + O  such that wl/u-+O, where u is a typical velocity 
scale of the sources. For the present w 9 7i1  situation @ n O + O  or m~~( l /aro~O)-+O,  
where the Mach number m, = u/afo % 1.  Thus it is consistent to have l / a f 0 ~ ,  = O(1) 
a t  most. The exponential factor in the source integral (3.12) can still be rendered 
negligible by noting that 1 - a%o/ajo < 1 in most practical situations. In  this case, the 
source integral in (3.12) reduces to 

UfOJexP W f O l X  - a,ot)l JAf(YV Y,' 0) exp r - ikf0YrldYrdYsdkf0o, 

which is interpreted as 
-4r2afOJA,(y, = x-a~ot,;Ys,t)dysdt. 

Since 1 / u ~ ~  < 1, i.e. the relaxation length is large compared with the source length 
scale, again A, = A,,, so that the statement (3.14) also holds for non-compact sources 
when the propagation medium is characterized by the relaxation time ro for the 
sources in the spectral range w 9 ri1. 

701 propagates 
with the afo waves but is exponentially damped and becomes ' absorbed' in a distance 
of order 2 (1 - a~o/afo)-1afo70 from the source. The question which naturally arises is 
how the bulk of the aerodynamic sound is propagated. Earlier studies of wave propa- 
gation in a relaxing medium (Chu 1957; Moore & Gibson 1960; Clarke 1964; Vincenti & 
Kruger 1966) involving wave hierarchies (Lighthill & Whitham 1955; Whitham 1959, 
1974) have shown that the main disturbance is propagated along the equilibrium 
waves ueo. For an estimate of the behaviour of p(x, t )  a t  large values of x /aeo~o in the 
vicinity of x = aeot, expansions about w0 = 0 are made. The first approximation 
gives the aerodynamic sound problem for an equilibrium medium 

We have shown that aerodynamic sound in the spectral range w 
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(where keo = w/a,, is the appropriate wavenumber), from which the compact and non- 
compact source limits could be obtained. I n  order t.0 obtain the effect of the higher- 
order frozen waves on the behaviour in the vicinity ofthe equilibrium waves expansion 
in ~7~ to the next order is required, giving 

+ k%@ir/aeoId~rd~sdw, (3.16) 

where an effective ‘diffusivity’ is defined as 9 = &7o(c&-&). Equation (3.15) then 
forms the basis for our studies of compact and non-compact sources. Again, for com- 
pact sources k,,l-+O and k$,By,-+O, so that (3.15) becomes, with the use of the 
convolution theorem, 

The main disturbances, corresponding to the sources in the spectral range o < 7i1, 

propagate along the aeo waves and are diffused by the effects of the higher-order 
waves. Since wO < 1 applies in the source region as well, i.e. A ,  = A,,,, the sources 
behave as if they are entirely in equilibrium. The compact source result (3.16) can be 
interpreted as follows: 

is a distribution of point sources located a t  x/ae0+ 0. In  the far field, the disturbances 
are propagated along the t = x/a,, waves and are diffused, the diffusive structure 
about each disturbance pulse being (49x/aeO)4. However, the diffusive effects are 
small for the ‘low ’ frequency waves and the main aerodynamic sound is given by 

( 9 / a e o ) J d e ( Y ,  t ) d ~  

(3.17) 

For non-compact sources, wl/u + 0 such that wl/(a,,m,) -+ 0, where me = u/aeo B 1 and 
wl/a,, = ke01 is arbitrary but a t  most O(1).  The exponential factor in the source integra,l 
of (3.15), $ ( U ~ ~ / U ~ ~ -  l)(w~,,)(~y~/a,~), is negligible because ~7~ < 1 .  Thus 

Since both wl/u -+ 0 and w0 -+ 0, the ratio Z / U ~ ~  is left arbitrary. Thus, depending on 
the magnitude of E/urO, the sources in A ,  could conceivably be undergoing effects of 
relaxation. The effects of the diffusivity are again small, and the main aerodynamic 
sound radiates in the manner described by (3.17), except that the source descripticn 
is A,  rather than A,,,, which requires consideration of the details of the relaxation 
process in the non-compact source region. 

Considering the form of the sound sources A, and A,  further, we note that, in a 
pure gas in the absence of external sources of mass-flux fluctuation Q and forces 4, 
A, is due entirely to the stress tensor T i ,  ,. Now, for a relaxing medium, for instance 
injected vaporizing droplets in a gas, the contributions to Q and would be due to 
the mass exchange between the gas and droplets and the force acting on the gas due 
to droplet drag. At equilibrium, as for ‘low’ frequency compact sources, both of 
these vanish, so that the contribution to the source integral A , ,  would come from 
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qj,e. However, for ‘low ’ frequency non-compact sources, A,  necessarily encompasses 
relaxation effects in the source region. One could, of course, make the frequency 
‘high ’ or ‘low ’ for the relaxing medium by regulating ril. 
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